Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Integr Med ; 20(6): 477-487, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2041962

ABSTRACT

Traditional Chinese medicine, as a complementary and alternative medicine, has been practiced for thousands of years in China and possesses remarkable clinical efficacy. Thus, systematic analysis and examination of the mechanistic links between Chinese herbal medicine (CHM) and the complex human body can benefit contemporary understandings by carrying out qualitative and quantitative analysis. With increasing attention, the approach of network pharmacology has begun to unveil the mystery of CHM by constructing the heterogeneous network relationship of "herb-compound-target-pathway," which corresponds to the holistic mechanisms of CHM. By integrating computational techniques into network pharmacology, the efficiency and accuracy of active compound screening and target fishing have been improved at an unprecedented pace. This review dissects the core innovations to the network pharmacology approach that were developed in the years since 2015 and highlights how this tool has been applied to understanding the coronavirus disease 2019 and refining the clinical use of CHM to combat it.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Network Pharmacology , Medicine, Chinese Traditional/methods , Treatment Outcome
2.
Brief Bioinform ; 22(2): 976-987, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343642

ABSTRACT

Emerging viral infections seriously threaten human health globally. Several challenges exist in identifying effective compounds against viral infections: (1) at the initial stage of a new virus outbreak, little information, except for its genome information, may be available; (2) although the identified compounds may be effective, they may be toxic in vivo and (3) cytokine release syndrome (CRS) triggered by viral infections is the primary cause of mortality. Currently, an integrative tool that takes all those aspects into consideration for identifying effective compounds to prevent viral infections is absent. In this study, we developed iDMer, as an integrative and mechanism-driven response system for addressing these challenges during the sudden virus outbreaks. iDMer comprises three mechanism-driven compound identification modules, that is, a virus-host interaction-oriented module, an autophagy-oriented module and a CRS-oriented module. As a one-stop integrative platform, iDMer incorporates compound toxicity evaluation and compound combination identification for virus treatment with clear mechanisms. iDMer was successfully tested on five viruses, including the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results indicated that, for all five tested viruses, compounds that were reported in the literature or experimentally validated for virus treatment were enriched at the top, demonstrating the generalized effectiveness of iDMer. Finally, we demonstrated that combinations of the individual modules successfully identified combinations of compounds effective for virus intervention with clear mechanisms.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks , Algorithms , Autophagy , COVID-19/virology , Host Microbial Interactions , Humans , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL